人妖一区二区三区,国产黄大片在线观看视频,亚洲日韩中文字幕一区,国产日韩在线播放

    logo
    中國學(xué)科發(fā)展戰(zhàn)略·未來作物品種設(shè)計

    中國學(xué)科發(fā)展戰(zhàn)略·未來作物品種設(shè)計

    作為植物的繁殖器官,種子發(fā)育在植物的生命周期中起到至關(guān)重要的作用。種子為胚胎提供營養(yǎng),能夠在脅迫環(huán)境下進行休眠使植物更好地適應(yīng)環(huán)境。此外,種子是人類賴以生存的糧食的最主要來源,為人類提供了 80% 的主糧,是糧食產(chǎn)量和品質(zhì)形成的基礎(chǔ)。因此,對種子形成與萌發(fā)調(diào)控機制的研究將為農(nóng)作物的產(chǎn)量和品質(zhì)提高提供理論基礎(chǔ)和技術(shù)支撐。
    本書預(yù)覽點擊購買
    編輯委員會
    主編:李家洋
    編委:( 按姓氏漢語拼音排序 )
    曹曉風(fēng)  陳彩艷  陳曉亞  程祝寬  種康  儲成才 鄧興旺 丁勇  丁兆軍 傅向東  高彩霞  龔繼明   郭巖 郭慶華 韓斌  韓方普 何光存 何祖華 黃三文 黃學(xué)輝  蔣才富焦雨鈴 景海春 康振聲 賴錦盛  李霞 李傳友 李云海  廖紅 林榮呈  劉巧泉 劉耀光 羅杰 漆小泉 孫其信   田志喜  萬建民 王臺 王國棟 王漢中  王永紅 吳殿星 吳孔明 謝芳 熊立仲  徐國華 薛淮 薛紅衛(wèi) 薛勇彪 嚴建兵  楊淑華 張啟發(fā) 趙劍峰 鐘上威 周儉民  周雪平 朱新廣 朱玉賢
    編輯組成員:儲成才  田志喜  王永紅  于昕
    我國是人口大國,糧食安全是事關(guān)國家長治久安的重大戰(zhàn)略問題。習(xí)近平總書記指出,中國人的飯碗任何時候都要牢牢端在自己手上,我們的飯碗應(yīng)該主要裝中國糧,要下決心把民族種業(yè)搞上去,抓緊培育具有自主知識產(chǎn)權(quán)的優(yōu)良品種,從源頭上保障國家糧食安全。
    育種技術(shù)的發(fā)展為保證糧食產(chǎn)量和安全做出了巨大貢獻,其發(fā)展得益于遺傳學(xué)、分子生物學(xué)和基因組學(xué)的發(fā)展。早期通過馴化選育農(nóng)家品種,進程慢,效率低。隨著遺傳學(xué)的發(fā)展,20 世紀 30 年代通過遺傳育種創(chuàng)制的雜交玉米開辟了農(nóng)業(yè)革命;60 年代起,在全世界范圍內(nèi)以矮化育種為標志的“綠色革命”使小麥、水稻等作物產(chǎn)量大幅度提高;80 年代生物技術(shù)的發(fā)展促生了分子育種,使常規(guī)遺傳育種有了一定的可跟蹤性。但上述育種技術(shù)仍然不能滿足日益增長的糧食需求,更加高效和精準的育種技術(shù)——“設(shè)計育種” 出現(xiàn),即通過品種設(shè)計進行多基因的復(fù)雜性狀的定向改良與聚合,從而達到糧食高產(chǎn)優(yōu)質(zhì)的目標。設(shè)計育種技術(shù)的突破將依賴于遺傳學(xué)、分子生物學(xué)和基因組學(xué)等學(xué)科的發(fā)展,尤其要依賴于對高產(chǎn)優(yōu)質(zhì)等復(fù)雜性狀形成的分子機制的闡明。我國農(nóng)業(yè)基礎(chǔ)研究歷經(jīng)幾十年發(fā)展,在農(nóng)業(yè)生物功能基因組學(xué)等基礎(chǔ)研究領(lǐng)域取得了長足進步,相繼完成了水稻、小麥、玉米、大豆、油菜、棉花等重要農(nóng)作物全基因組測序,在主要農(nóng)業(yè)生物重要性狀形成的遺傳解析與分子機制研究方面取得了重要進展,水稻功能基因研究處于國際領(lǐng)跑地位。
    中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項“分子模塊設(shè)計育種創(chuàng)新體系”實施以來,針對我國糧食安全和戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展的重大需求,以水稻為主、小麥等為輔,初步建立了從“分子模塊”到“設(shè)計型品種”的現(xiàn)代生物技術(shù)育種創(chuàng)新體系。在中國科學(xué)院學(xué)部學(xué)科發(fā)展戰(zhàn)略研究項目“未來作物設(shè)計的分子生物學(xué)基礎(chǔ)”的資助下,我們邀請從事植物基礎(chǔ)研究和應(yīng)用基礎(chǔ)研究領(lǐng)域的一線科學(xué)家進行戰(zhàn)略研究,他們中間 80% 以上的成員參與國家重大科學(xué)研究計劃、中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項,具有深厚的研究基礎(chǔ)和對相關(guān)領(lǐng)域的前瞻性把握。
    本書首次提出未來作物概念,針對未來作物品種設(shè)計的需求,圍繞植物基礎(chǔ)科學(xué)與現(xiàn)代農(nóng)業(yè)、現(xiàn)代農(nóng)業(yè)與環(huán)境、現(xiàn)代農(nóng)業(yè)與人類健康研究領(lǐng)域,重點對種子生物學(xué)、植物形態(tài)建成、光合和營養(yǎng)高效利用、植物環(huán)境適應(yīng)等的分子基礎(chǔ)解析,植物代謝調(diào)控機制、多倍體形成的分子機制、復(fù)雜多倍體作物功能基因解析、基因組編輯與基因表達調(diào)控等的新技術(shù)新方法等進行了國內(nèi)外進展綜述,論述了上述領(lǐng)域未來發(fā)展趨勢與關(guān)鍵突破口,并提出了 2035 年和 2050 年階段性未來作物戰(zhàn)略目標,同時對研究政策保障和環(huán)境支持建議進行了戰(zhàn)略研究。希望本書的出版對強化農(nóng)業(yè)基礎(chǔ)科技創(chuàng)新、驅(qū)動我國農(nóng)業(yè)發(fā)展、保障糧食安全起到戰(zhàn)略性指導(dǎo)作用。
    在項目立項、調(diào)研、報告撰寫和本書的組織出版過程中,戰(zhàn)略規(guī)劃研究組專家投入了大量的心力。借此機會,向所有參與《未來作物品種設(shè)計》撰寫的專家和同仁表示衷心的感謝!
    本書內(nèi)容涉及領(lǐng)域廣泛,相關(guān)研究領(lǐng)域發(fā)展迅速,遺漏和不妥之處在所難免,懇請讀者指正。
     
    中國科學(xué)院院士
    2020年9月22日于北京
    未來作物精準設(shè)計 / 韓斌  薛勇彪  >朱玉賢康振聲 張啟發(fā)
    種子形成與萌發(fā) / 鄧興旺  薛紅衛(wèi) 王臺  鐘上威  李云海
    植物形態(tài)建成 / 焦雨鈴  丁兆軍  傅向東
    生育期、育性與雜種優(yōu)勢 / 程祝寬  劉耀光
    光合作用 / 朱新廣  林榮呈
    水資源利用效率與抗旱 / 熊立仲
    養(yǎng)分資源高效利用 / 徐國華  廖紅  陳彩艷  龔繼明
    生物固氮 / 謝芳  李霞
    病蟲害與抗性 / 何祖華  周儉民 周雪平  李傳友  何光存
    鹽堿與極端溫度適應(yīng) / 種康  楊淑華  郭巖  蔣才富
    品質(zhì)與營養(yǎng) / 劉巧泉  吳殿星
    特殊功用作物改良 / 羅杰  王國棟  漆小泉  陳曉亞
    基因表達調(diào)控 / 丁勇  曹曉風(fēng)
    高通量表型技術(shù) / 郭慶華
    功能基因高效解析 / 賴錦盛  嚴建兵  黃學(xué)輝
    基因組編輯 / 高彩霞
    馴化與多倍體育種 / 黃三文  韓方普  王漢中
    政策保障與環(huán)境支持 / 景海春  孫其信  吳孔明  萬建民
    彩圖
    Arc, E., Sechet, J., Corbineau, F., Rajjou, L., and Marion-Poll, A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front. Plant Sci. 4, 63.
    Batista, R.A., Figueiredo, D.D., Santos-Gonzalez, J., and Kohler, C. (2019). Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev. 33, 466-476.
    Bentsink, L., and Koornneef, M. (2008). Seed dormancy and germination. Arabidopsis Book 6, e0119.
    Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F.L., and Holdsworth, M.J. (2008). Seed after-ripening is a discrete developmental pathway associated with speci?c gene networks in Arabidopsis. Plant J. 53, 214-224.
    Chang, G.X., Wang, C.T., Kong, X.X., Chen, Q., Yang, Y.P., and Hu, X.Y. (2018). AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 501, 232-238.
    Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H., et al. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2, 15195.
    Cho, J.N., Ryu, J.Y., Jeong, Y.M., Park, J., Song, J.J., Amasino, R.M., Noh, B., and Noh, Y.S. (2012). Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell 22, 736-748.
    Day, R.C., Herridge, R.P., Ambrose, B.A., and Macknight, R.C. (2008). Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol. 148, 1964-1984.
    Doll, N.M., Royek, S., Fujita, S., Okuda, S., Chamot, S., Stintzi, A., Widiez, T., Hothorn, M., Schaller, A., Geldner, N., et al. (2020). A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 367, 431-435.
    Dong, H., Dumenil, J., Lu, F.H., Na, L., Vanhaeren, H., Naumann, C., Klecker, M., Prior, R., Smith, C., McKenzie, N., et al. (2017). Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatoryproteins to limit cell proliferation in Arabidopsis. Genes Dev. 31, 197-208.
    Du, L., Li, N., Chen, L., Xu, Y., Li, Y., Zhang, Y., and Li, C. (2014). The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-speci?c protease UBP15/SOD2 in Arabidopsis. Plant Cell 26, 665-677.
    Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y., Chen, H., Zhu, X., and Li, Y. (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants, 15203.
    Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., and Zhang, Q. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164-1171.
    Finkelstein, R., Reeves, W., Ariizumi, T., and Steber, C. (2008). Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59, 387-415.
    Gazzarrini, S., and Tsai, A.Y. (2015). Hormone cross-talk during seed germination. Essays Biochem. 58, 151-164.
    Guo, G., Liu, X., Sun, F., Cao, J., Huo, N., Wuda, B., Xin, M., Hu, Z., Du, J., Xia, R., et al. (2018b). Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell 30, 796-814.
    Guo, T., Chen, K., Dong, N.Q., Shi, C.L., Ye, W.W., Gao, J.P., Shan, J.X., and Lin, H.X. (2018a).
    GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30, 871-888.
    Holdsworth, M.J., Bentsink, L., and Soppe, W.J.J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 179, 33-54.
    Hu, Y., Han, X., Yang, M., Zhang, M., Pan, J., and Yu, D. (2019). The transcription factor INDUCER OF CBF EXPRESSION1 interacts with ABSCISIC ACID INSENSITIVE5 and
    DELLA proteins to ?ne-tune abscisic acid signaling during seed germination in Arabidopsis. Plant Cell 31, 1520-1538.
    Jiang, Z., Xu, G., Jing, Y., Tang, W., and Lin, R. (2016). Phytochrome B and REVEILLE1/2-
    mediated signalling controls seed dormancy and germination in Arabidopsis. Nat. Commun.7, 12377.
    Jiao, Y.,  Wang, Y.,  Xue, D., Wang,  J., Yan,  M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X.,   et al. (2010). Regulation of OsSPL14 by OsmiR156 de?nes ideal plant architecture in rice. Nat. Genet. 42, 541-544.
    Kang, J., Yim, S., Choi, H., Kim, A., Lee, K.P., Lopez-Molina, L., Martinoia, E., and Lee, Y. (2015). Abscisic acid transporters cooperate to control seed germination. Nat. Commun. 6, 8113.
    Li, N., and Li, Y. (2016). Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 33, 23-32.
    Li, N., Xu, R., and Li, Y. (2019). Molecular networks of seed size control in plants. Annu. Rev.
    Plant Biol. 70, 435-463.
    Li, Y., Zheng, L., Corke, F., Smith, C., and Bevan, M.W. (2008). Control of ?nal seed and organ
    size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22, 1331-1336.
    Liu, X., Hu, P., Huang, M., Tang, Y., Li, Y., Li, L., and Hou, X. (2016). The NF-YC-RGL2
    module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 7, 12768.
    Ma, W., Guan, X., Li, J., Pan, R., Wang, L., Liu, F., Ma, H., Zhu, S., Hu, J., Ruan, Y.L., et al. (2019). Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proc. Natl. Acad. Sci. USA 116, 4716-4721.
    Pen?eld, S., Josse, E.M., Kannangara, R., Gilday, A.D., Halliday, K.J., and Graham, I.A. (2005). Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr. Biol. 15, 1998-2006.
    Shi, H., Wang, X., Mo, X., Tang, C., Zhong, S., and Deng, X.W. (2015). Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc. Natl. Acad. Sci. USA 112, 3817-3822.
    Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., Shangguan, Y., et al. (2016). OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48, 447-456.
    Song, X.J., Huang, W., Shi, M., Zhu, M.Z., and Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39,623-630.
    Sun, S., Wang, L., Mao, H., Shao, L., Li, X., Xiao, J., Ouyang, Y., and Zhang, Q. (2018). A G-protein pathway determines grain size in rice. Nat. Commun. 9, 851.
    Topham, A.T., Taylor, R.E., Yan, D., Nambara, E., Johnston, I.G., and Bassel, G.W. (2017). Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 114, 6629-6634.
    Vaistij, F.E., Barros-Galvao, T., Cole, A.F., Gilday, A.D., He, Z., Li, Y., Harvey, D., Larson, T.R., and Graham, I.A. (2018). MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 115, 8442-8447.
    Wang, J.L., Tang, M.Q., Chen, S., Zheng, X.F., Mo, H.X., Li, S.J., Wang, Z., Zhu, K.M., Ding,
    L.N., Liu, S.Y., et al. (2017). Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnol. J. 15, 1024-1033.
    Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y.,  Chen, X., Zhang, Y.,  Gao,   C., et al. (2015a). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, 949-954.
    Wang,  S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q.,  et al. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950-954.
    Wang, Y., Xiong, G., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y., Zeng, L., Xu, E., Xu, J., et al. (2015b). Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, 944-948.
    Wang, Z., Chen, F.,  Li, X., Cao, H., Ding, M., Zhang, C., Zuo, J., Xu, C., Xu, J., Deng, X.,       et al. (2016). Arabidopsis seed germination speed is controlled by SNL histone deacetylase- binding factor-mediated regulation of AUX1. Nat. Commun. 7, 13412.
    Wu, J.J., Peng, X.B., Li, W.W., He, R., Xin, H.P., and Sun, M.X. (2012). Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes. Dev. Cell 23, 1043-1058.
    Xia, T.,  Li, N., Dumenil, J., Li, J., Kamenski, A., Bevan, M.W., Gao, F.,  and Li, Y.  (2013). The
    ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organsize in Arabidopsis. Plant Cell 25, 3347-3359.
    Xie, G., Li, Z., Ran, Q., Wang, H., and Zhang, J. (2017). Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnol. J. 16, 234-244.
    Xu, R., Duan, P., Yu, H., Zhou, Z., Zhang, B., Wang, R., Li, J., Zhang, G., Zhuang, S., Lyu,  J.,  et al. (2018a). Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol. Plant 11, 860-873.
    Xu, R., Yu, H., Wang, J., Duan, P., Zhang, B., Li, J., Li, Y., Xu, J., Lyu, J., Li, N., et al. (2018b).
    A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. Plant J. 95, 937-946.
    Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367-378.
    Yan, A., and Chen, Z. (2017). The pivotal role of abscisic acid signaling during transition from seed maturation to germination. Plant Cell Rep. 36, 689-703.
    Yin, L.L., and Xue, H.W. (2012). The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24, 1049- 1065.
    Zhang, Y., Xiong, Y., Liu, R., Xue, H.W., and Yang, Z. (2019). The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proc. Natl. Acad. Sci. USA 116, 16121-16126.
    Zheng, X., Li, Q., Li, C., An, D., Xiao, Q., Wang, W., and Wu, Y. (2019). Intra-kernel reallocation of proteins in maize depends on VP1-mediated scutellum development and nutrient assimilation. Plant Cell 31, 2613-2635.
    Zuo, J., and Li, J. (2014). Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu. Rev. Genet. 48, 99-118.
    暫無
    新書推薦