人妖一区二区三区,国产黄大片在线观看视频,亚洲日韩中文字幕一区,国产日韩在线播放

    logo
    中國學科發(fā)展戰(zhàn)略·太陽電池科學技術

    中國學科發(fā)展戰(zhàn)略·太陽電池科學技術

    太陽電池科學技術是一門交叉學科,涉及物理學、電子科學與技術、化學、材料科學、工程科學技術、能源科學技術,同時又具有很強的應用性,與社會經(jīng)濟、國計民生緊密聯(lián)系。 能源是經(jīng)濟社會發(fā)展的重要物質(zhì)基礎。當前的環(huán)境問題在很大程度上是由傳統(tǒng)化石能源的巨大消費引起的。能源與環(huán)境問題歸根結(jié)底是發(fā)展的問題。能源問題已經(jīng)成為制約傳統(tǒng)產(chǎn)業(yè)未來可持續(xù)發(fā)展的瓶頸。自第一次工業(yè)革命以來,煤炭、石油、天然氣等化石能源迅速成為經(jīng)濟社會發(fā)展的支撐。但同時,這些傳統(tǒng)能源的廣泛利用造成了嚴重的環(huán)境問題,嚴重威脅著地球生物的生存環(huán)境。為了應對日益嚴重的能源危機,各國積極探尋新能源技術,特別是太陽能、風能、生物能等可再生能源,因其取之不盡、用之不竭、清潔環(huán)保的特點,受到世界各國的高度重視。我國現(xiàn)階段的環(huán)境污染在一定程度上與以煤炭為主的能源結(jié)構有關。在中國現(xiàn)代化進程中,能源消耗帶來了資源環(huán)境破壞的外部成本,應積極推動能源生產(chǎn)與利用方式變革,提高能源資源利用效率。能源系統(tǒng)、經(jīng)濟系統(tǒng)與環(huán)境系統(tǒng)存在密切的相互聯(lián)系、相互影響、相互制約的發(fā)展關系。大力開發(fā)和利用清潔可再生能源是實現(xiàn)經(jīng)濟效益和環(huán)境效益共贏的有效舉措。
    本書預覽點擊購買
    中國學科發(fā)展戰(zhàn)略
    聯(lián)合領導小組
    組長:丁仲禮 李靜海
    副組長:秦大河 韓宇
    成員: 王恩哥 朱道本 陳宜瑜 傅伯杰 李樹深 楊衛(wèi) 汪克強 李婷 蘇榮輝 王長銳 鄒立堯 于晟 董國軒 陳擁軍 馮雪蓮 王岐東 黎明 張兆田 高自友 徐巖英
    聯(lián)合工作組
    組長:蘇榮輝 于晟
    成員: 龔旭 孫粒 高陣雨 李鵬飛 錢瑩潔 薛淮 馮霞 馬新勇
    中國學科發(fā)展戰(zhàn)略 太陽電池科學技術
    項目組
    組長:褚君浩 李永舫
    成員(以姓名筆畫為序):劉劍 孫碩 孫琳 李樹深 楊濤 楊平雄 楊德仁 沈宏 沈輝 張濤 張茂杰 陸書龍 陳時友 孟慶波 胡志高 查亞兵 駱軍委 陶加華 黃維 薛春來
    能源是經(jīng)濟社會發(fā)展的重要物質(zhì)基礎。能源問題已經(jīng)成為制約傳統(tǒng)產(chǎn)業(yè)未來可持續(xù)發(fā)展的瓶頸。能源系統(tǒng)、經(jīng)濟系統(tǒng)與環(huán)境系統(tǒng)存在密切的相互聯(lián)系、相互影響、相互制約的發(fā)展關系。自第一次工業(yè)革命以來,煤炭、石油、天然氣等化石能源快速發(fā)展,成為經(jīng)濟社會發(fā)展的支撐。但同時,這些傳統(tǒng)能源的廣泛利用也造成了嚴重的環(huán)境問題,威脅著地球生物的生存環(huán)境。太陽能等可再生能源,因其取之不盡、用之不竭、清潔環(huán)保的特點,受到世界各國的高度重視。大力開發(fā)利用清潔可再生能源是實現(xiàn)經(jīng)濟效益和環(huán)境效益共贏的有效舉措。毫無疑問,太陽能技術是很有前途和潛力的可再生能源和清潔能源技術,其涉及材料、器件和系統(tǒng)等方面,是多學科交叉的前沿研究領域。基于此,從科學層面來分析太陽電池的理論基礎、發(fā)展思路和趨勢,同時總結(jié)當前該領域的最新進展是非常必要的,也是十分亟須的。
    本書主要研究太陽能光伏發(fā)電技術的科學基礎、學科框架和發(fā)展趨勢,分析當前各類太陽電池能量轉(zhuǎn)換技術的科學發(fā)展路徑和科學原理制約,探討各類太陽電池的發(fā)展趨勢和關鍵技術,分析和預判太陽電池科學技術的發(fā)展形勢,探索太陽電池科學技術發(fā)展的新思路,研究太陽電池產(chǎn)業(yè)發(fā)展的策略路徑、產(chǎn)業(yè)布局及規(guī)劃目標。同時,本書還討論了第三次工業(yè)革命新構想——能源互聯(lián)網(wǎng)建設問題。書中在政策層面提出了針對發(fā)展太陽電池科學技術和應用的若干建議。具體來講,本書主要針對當前太陽電池科學技術的快速發(fā)展,從多學科(材料科學、物理學、電子科學與技術、工程科學技術等)入手,通過厘清太陽電池科學技術的發(fā)展規(guī)律和發(fā)展前景,并結(jié)合中國科學家在該領域取得的重要進展和突破,系統(tǒng)分析了它們的科學意義和學術價值。并且,項目組組長褚君浩院士和主要研究骨干還極參與我國太陽電池產(chǎn)業(yè)的相關決策咨詢,建言獻策,結(jié)合我國國情提出了促進太陽電池產(chǎn)業(yè)發(fā)展的財稅金融政策、產(chǎn)業(yè)規(guī)劃政策、科技創(chuàng)新政策、人才培養(yǎng)政策及市場環(huán)境建設政策等若干資助機制與政策建議。
    本書主要由來自中國科學院上海技術物理研究所、中國科學院化學研究所、南京工業(yè)大學、國防科技大學、中山大學、浙江大學、華東師范大學、中國科學院半導體研究所、中國科學院蘇州納米技術與納米仿生研究所、中國科學院合肥等離子體物理研究所、中國科學院物理研究所、蘇州大學及華北電力大學等高校和科研院所的科學家參與撰寫完成,具體分工如下:中國科學院上海技術物理研究所褚君浩、沈宏、孫碩撰寫第一章;華東師范大學楊平雄、胡志高、孫琳、陳時友、陶加華撰寫第二章;中國科學院上海技術物理研究所褚君浩、沈宏、孫碩,中國科學院化學研究所李永舫,南京工業(yè)大學黃維,中山大學沈輝,浙江大學楊德仁,華東師范大學楊平雄、胡志高、孫琳、陳時友、陶加華,中國科學院半導體研究所李樹深、劉劍、楊濤、駱軍委、薛春來,中國科學院蘇州納米技術與納米仿生研究所陸書龍,中國科學院物理研究所孟慶波,蘇州大學張茂杰,中國科學院合肥等離子體物理研究所及華北電力大學相關老師撰寫第三章;國防科技大學張濤、查亞兵撰寫第四章;中國科學院上海技術物理研究所褚君浩、沈宏、孫碩撰寫第五章。褚君浩、胡志高負責統(tǒng)稿。
    本書的出版得到中國科學院和國家自然科學基金委員會的學科發(fā)展戰(zhàn)略研究項目的資助。
    褚君浩
    2019 年 1 月
    總序
    前言
    摘要
    Abstract
    第一章 科學意義與戰(zhàn)略價值
    第一節(jié) 新能源應用的科學意義
    第二節(jié) 新能源應用的戰(zhàn)略價值
    一、我國的能源情況
    二、世界新能源開發(fā)情況
    三、小結(jié)
    第二章 發(fā)展規(guī)律與學科基礎
    第一節(jié) 太陽能光伏發(fā)電技術的發(fā)展歷程
    第二節(jié) 太陽電池的分類及學科基礎
    第三節(jié) 太陽能光伏發(fā)電系統(tǒng)
    一、獨立光伏發(fā)電系統(tǒng) 
    二、并網(wǎng)光伏發(fā)電系統(tǒng)
    三、分布式光伏發(fā)電系統(tǒng)
    第三章 發(fā)展現(xiàn)狀與發(fā)展態(tài)勢
    第一節(jié) 晶硅太陽電池
    一、高純硅原料提純技術
    二、晶硅生長技術
    三、晶硅的切片
    第二節(jié) 薄膜太陽電池
    一、高效硅基薄膜四結(jié)疊層電池研究
    二、高效碲化鎘薄膜太陽電池及產(chǎn)業(yè)化研究
    三、高效銅銦鎵硒薄膜太陽電池研究
    四、銅鋅錫硫硒薄膜太陽電池的制備關鍵技術及界面特性研究
    五、高效晶硅薄膜太陽電池研究
    第三節(jié) 新型太陽電池
    一、鈣鈦礦太陽電池
    二、染料敏化太陽電池
    三、單結(jié)太陽電池
    四、疊層多結(jié)太陽電池 
    五、中間能帶太陽電池
    六、量子點中間能帶太陽電池
    第四節(jié) 柔性太陽電池
    一、柔性染料敏化太陽電池
    二、柔性鈣鈦礦太陽電池
    三、柔性多結(jié)薄膜 - 太陽電池
    四、聚合物太陽電池
    第四章 發(fā)展思路與發(fā)展方向
    第一節(jié) 光電能量轉(zhuǎn)換和綠色地球
    一、發(fā)展太陽電池科學技術的重要性
    二、太陽電池科學技術的發(fā)展歷程和思路
    三、主要太陽電池品種的發(fā)展方向
    第二節(jié) 太陽電池產(chǎn)業(yè)的發(fā)展策略
    一、國際發(fā)展策略
    二、國內(nèi)發(fā)展策略
    第三節(jié) 能源互聯(lián)網(wǎng)建設
    一、能源互聯(lián)網(wǎng)的概念
    二、太陽電池發(fā)展有效推動能源互聯(lián)網(wǎng)發(fā)展
    三、能源互聯(lián)網(wǎng)的建設與發(fā)展促進太陽電池發(fā)展
    四、能源互聯(lián)網(wǎng)建設關鍵技術分析
    五、關于發(fā)展能源互聯(lián)網(wǎng)的一些建議
    第五章 資助機制與政策建議
    第一節(jié) 促進光伏產(chǎn)業(yè)發(fā)展的資助機制
    第二節(jié) 促進光伏產(chǎn)業(yè)發(fā)展的政策建議
    一、產(chǎn)業(yè)規(guī)劃政策
    二、科技創(chuàng)新政策
    三、人才培養(yǎng)政策
    四、市場環(huán)境建設政策
    參考文獻
    關鍵詞索引
    [1] Grancini G, Roldancarmona C, Zimmermann I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8: 15684.
    [2] Zhu X, Yang D, Yang R, et al. Superior stability for perovskite solar cells with 20% effi ciency using vacuum co-evaporation. Nanoscale, 2017, 9(34): 12316-12323.
    [3] Zhang H, Wang H, Chen W, et al. CuGaO2: a promising inorganic hole-transporting material for highly effi cient and stable perovskite solar cells. Advanced Materials, 2017, 29: 1604984.
    [4] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized effi ciencies greater than 20%. Science, 2017, 358(6364): 768-771.
    [5] Alferov H, Andreev V, Rumyantsev V. Solar photovoltaics: trends and prospects. Semiconductors, 2004, 38: 899-908.
    [6] Chapin D, Fuller C, Pearson G. A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954, 25(5): 676-677.
    [7] 馬文會 , 戴永年 , 楊斌 , 等 . 太陽能級硅制備新技術研究進展 . 新材料產(chǎn)業(yè) , 2006, 10: 12-16.
    [8] 闕端麟 . 硅材料科學與技術 . 杭州 : 浙江大學出版社 , 2000.
    [9] 趙文翰 , 劉立軍 . 雙坩堝連續(xù)加料法單晶硅生長過程中的熔體流動與雜質(zhì)輸運 . 杭州 : 第十一屆中國太陽級硅及光伏發(fā)電研討會 , 2015.
    [10] 汪義川 , 李劍 , 黃治國 , 等 . 高穩(wěn)定性單晶硅太陽能電池 . 上海 : 第十屆中國太陽能光伏會議論文 , 2008.
    [11] 陳加和 . 一種具有高機械強度的摻鍺直拉硅片及其制備方法 : CN200810122375. X, 2009-05-06.
    [12] Muller A, Ghosh M, Sonnenschein R, et al. Silicon for photovoltaic applications. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2006, 134(2): 257-262.
    [13] 楊德仁 , 朱鑫 , 汪雷 , 等 . 一種摻雜鍺的定向凝固鑄造多晶硅 : CN200610154949. 2, 2007-07-11.
    [14] 余學功 , 楊德仁 . 摻鍺的定向凝固鑄造單晶硅及其制備方法 : CN200910099991. 2, 2009-12-02.
    [15] Kasjanow H, Nikanorov A, Nacke B, et al. 3D coupled electromagnetic and thermal modelling of EFG silicon tube growth. Journal of Crystal Growth, 2007, 303(1): 175-179.
    [16] Rohatgi A, Kim D S, Nakayashiki K, et al. High-efficiency solar cells on edge-defined filmfed grown (18.2%) and string ribbon (17.8%) silicon by rapid thermal processing. Applied Physics Letters, 2004, 84(1): 145-147.
    [17] Lange H, Schwirtlich I A. Ribbon growth on substrate (RGS—a new approach to high speed growth of silicon ribbons for photovoltaics. Journal of Crystal Growth, 1990, 104(1): 108-112.
    [18] Ai B, Shen H, Ban Q, X. et al. Preparation and characterization of Si sheets by renewed SSP technique. Journal of Crystal Growth, 2004, 270(3): 446-454.
    [19] Gurtler R W, Baghdadi A, Ellis R J, et al. Silicon ribbon growth via the ribbon-to-ribbon (RTR) technique: process update and material characterization. Journal of Electronic Materials, 1978, 7(3): 441-477.
    [20] Kojima A, Teshima K, Miyasaka T, et al. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds(2) Proc. 210th ECS Meeting, The Electrochemical Society, 2006.
    [21] Kim H, Lee C, Im J, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012, 2(591): 591.
    [22] Liu M, Johnston M B, Snaith H J, et al. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395-398.
    [23] Kayes B M, Nie H, Twist R, et al. 27.6% conversion efficiency, a new record for singlejunction solar cells under 1 sun illumination. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
    [24] Press Release, Fraunhofer Institute for Solar Energy Systems (2014). (https: //www. ise. fraunhofer. de/en/press-and-media/press-releases/pess-releases/2014/new-world-record-forsolar-cell-efficiency-at-46-percent. html).
    [25] Luque A, Mart A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997, 78(26): 5014-5017.
    [26] Mart A. Guadra L, Luque A. Intermediate-band solar cells//Marti A, Luque A. Next generation photovoltaics, high efficiency trough full spectru utilization. Institute of Physics Publishing, 2004: 140.
    [27] Nozawa T, Arakawa Y. Theoretical analysis of multilevel intermediate-band solar cells using a drift diffusion model. Journal of Applied Physics, 2013, 113(24): 3102.
    [28] Castan H, Perez E, Garcia H, et al. Experimental verification of intermediate band formation on titanium-implanted silicon. Journal of Applied Physics, 2013, 113(2): 4104.
    [29] Sheu J, Huang F W, Liu Y H, et al. Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2013, 102(7): 1107.
    [30] Marsen B, Klemz S, Unold T, et al. Investigation of the sub-bandgap photoresponse in CuGaS2: Fe for intermediate band solar cells. Progress in Photovoltaics, 2012, 20(6): 625-629.
    [31] Tanaka T, Miyabara M, Saito K, et al. Development of ZnTe-based solar cells. Materials Science Forum, 2013, 750: 80-83.
    [32] Ahsan N, Miyashita N, Islam M M, et al. Two-photon excitation in an intermediate band solar cell structure. Applied Physics Letters, 2012, 100(17): 2111.
    [33] Tanabe K, Guimard D, Bordel D, et al. High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Applied Physics Letters, 2012, 100(19): 3905.
    [34] Laghumavarapu R B, Moscho A, Khoshakhlagh A, et al. GaSb/GaAs type quantum dot solar cells for enhanced infrared spectral response. Applied Physics Letters, 2007, 90(17): 3125.
    [35] Ramiro I, Marti A, Antolin E, et al. Review of experimental results related to the operation of intermediate band solar cells. IEEE Journal of Photovoltaics, 2014, 4(2): 736-748.
    [36] Luque A, Marti A. The intermediate band solar cell: progress toward the realization of an attractive concept. Advanced Materials, 2010, 22(2): 160-174.
    [37] Yang X G, Yang T, Wang K, et al. Intermediate-band solar cells based on InAs/GaAs quantum dots. Chinese Physics Letters, 2011, 28(3): 8401.
    [38] Linares P G, Marti A, Antolin E, et al. Low-temperature concentrated light characterization applied to intermediate band solar cells. IEEE Journal of Photovoltaics, 2013, 3(2): 753-761.
    [39] Venkatasubramanian R, O’Quinn B, Hills J. 18.2%(AM1.5) effrcient GaAs solar cell on optical-grade polycrystalline Ge Substrate Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996.
    [40] Sheehy M A, Tull B R, Friend C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2007, 137(1): 289-294.
    [41] Cuadra L, Mart A, L pez N. Phonon bottleneck effect and photon absorption in self-ordered quantum dot intermediate band solar cells. Paris, France: Presented at the Nineteenth European Photovoltaic Solar Energy Conference and Exhibition, 2004.
    [42] Norman A G, Hanna M C, Dippo P, et al. InGaAs/GaAs QD superlattices: MOVPE growth, structural and optical characterization, and application in intermediate-band solar cells. Photovoltaic Specialists Conference, 2005: 43-48.
    [43] Marti A, Lopez N, Antolin E, et al. Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511-512: 638-644.
    [44] Tomic S, Jones T, Harrison N M, et al. Absorption characteristics of a quantum dot array induced intermediate band: implications for solar cell design. Applied Physics Letters, 2008, 93(26): 3105.
    [45] Sugaya T, Furue S, Komaki H, et al. Highly stacked and well-aligned In0.4Ga0.6AsIn0.4Ga0.6As quantum dot solar cells with In0.2Ga0.8AsIn0.2Ga0.8As cap layer. Applied Physics Letters, 2010, 97: 183104.
    [46] Guimard D, Morihara R, Bordel D, et al. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Applied Physics Letters, 2010, 96(20): 3507.
    [47] Bailey C G, Forbes D V, Polly S J, et al. Open-circuit voltage improvement of InAs/GaAs quantum-dot solar cells using reduced InAs coverage. IEEE Journal of Photovoltaics, 2012, 2(3): 269-275.
    [48] Bartolo R E, Dagenais M. Challenges to the concept of an intermediate band in InAs/GaAs quantum dot solar cells. Applied Physics Letters, 2013, 103(14): 1113.
    [49] Sellers D G, Polly S J, Hubbard S M, et al. Analyzing carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells. Applied Physics Letters, 2014, 104(22): 3903.
    [50] Yang X, Wang K, Gu Y, et al. Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping. Solar Energy Materials and Solar Cells, 2013, 113: 144-147.
    [51] Xu F, Yang X, Luo S, et al. Enhanced performance of quantum dot solar cells based on type quantum dots. Journal of Applied Physics, 2014, 116(13): 3102.
    [52] Ji H, Liang B, Simmonds P J, et al. Hybrid type- InAs/GaAs and type- GaSb/GaAs quantum dot structure with enhanced photoluminescence. Applied Physics Letters, 2015, 106(10): 3104.
    [53] Luo J, Stradins P, Zunger A, et al. Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy and Environmental Science, 2011, 4(7): 2546-2557.
    [54] Garnett E C, Brongersma M L, Cui Y, et al. Nanowire solar cells. Annual Review of Materials Research, 2011, 41(1): 269-295.
    [55] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510-519.
    [56] Hirst L C, Ekinsdaukes N J. Fundamental losses in solar cells. Progress in Photovoltaics, 2011, 19(3): 286-293.
    [57] Polman A, Atwater H A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 2012, 11(3): 174-177.
    [58] Conibeer G, Green M A, Corkish R, et al. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511-512: 654-662.
    [59] Lopez N, Reichertz L A, Yu K M, et al. Engineering the electronic band structure for multiband solar cells. Physical Review Letters, 2011, 106(2): 8701.
    [60] Marti A, Antolin E, Stanley C R, et al. Production of photocurrent due to intermediateto-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. Physical Review Letters, 2006, 97(24): 247701.
    [61] Popescu V, Bester G, Hanna M C, et al. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells. Physical Review B, 2008, 78(20): 205321.
    [62] Luque A, Marti A, Stanley C R, et al. Understanding intermediate-band solar cells. Nature Photonics, 2012, 6(3): 146-152.
    [63] Cotal H L, Fetzer C, Boisvert J, et al. - multijunction solar cells for concentrating photovoltaics. Energy and Environmental Science, 2009, 2(2): 174-192.
    [64] Leite M S, Woo R L, Munday J N, et al. Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency > 50%. Applied Physics Letters, 2013, 102: 033901.
    [65] Dimroth F. Approaches and methodology on accelerated stress tests in fuel cells. Fraunhofer Institute for Solar Energy Systems ISE, 2014.
    [66] Cho E, Green M A, Conibeer G, et al. Silicon quantum dots in a dielectric matrix for allsilicon tandem solar cells. Advances in Optoelectronics, 2007, 2007: 1-11.
    [67] Wang X, Koleilat G I, Tang J, et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics, 2011, 5(8): 480-484.
    [68] Ross R T, Nozik A J. Efficiency of hot-carrier solar energy converters. Journal of Applied Physics, 1982, 53(5): 3813-3818.
    [69] Nozik A J. Quantum dot solar cells. Physica E—Low-Dimensional Systems & Nanostructures, 2002, 14(1): 115-120.
    [70] Tisdale W A, Williams K J, Timp B A, et al. Hot-electron transfer from semiconductor nanocrystals. Science, 2010, 328(5985): 1543-1547.
    [71] Sambur J, Novet T, Parkinson B. Multiple exciton collection in sensitized photovoltaic system. Science, 2010, 330: 63.
    [72] Nozik A J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Letters, 2010, 10(8): 2735-2741.
    [73] Luo J, Franceschetti A, Zunger A, et al. Carrier multiplication in semiconductor nanocrystals: theoretical screening of candidate materials based on band-structure effects. Nano Letters, 2008, 8(10): 3174-3181.
    [74] Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601.
    [75] Schaller R D, Sykora M, Pietryga J M, et al. Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Letters, 2006, 6(3): 424-429.
    [76] Semonin O E, Luther J M, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334: 1530.
    [77] Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 2006, 100(7): 074510.
    [78] Chen X, Peng D, Ju Q, et al. Photon upconversion in core-shell nanoparticles. Chemical Society Reviews, 2015, 44(6): 1318-1330.
    [79] Liu G. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chemical Society Reviews, 2015, 44(6): 1635-1652.
    [80] Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chemical Society Reviews, 2009, 38(4): 976-989.
    [81] Timmerman D, Izeddin I, Stallinga P, et al. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photonics, 2008, 2(2): 105-109.
    [82] Trupke T, Green M A, Wurfel P, et al. Improving solar cell efficiencies by down-conversion of high-energy photons. Journal of Applied Physics, 2002, 92(3): 1668-1674.
    [83] NREL. Research Cell Efficiency Records. https://www.energy.gov/eere/solar/downloads/research-cell-efficiency-records.
    [84] Chuang C M, Brown P R, Bulovic V, et al. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796-801.
    [85] Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Publishing Group, 2014, 6(3): 242-247.
    [86] Lan X, Masala S, Sargent E H, et al. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233-240.
    [87] Jean J, Chang S, Brown P R, et al. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Advanced Materials, 2013, 25(20): 2790-2796.
    [88] Leschkies K S, Jacobs A G, Norris D J, et al. Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Applied Physics Letters, 2009, 95(19): 2013.
    [89] Krogstrup P, Jorgensen H I, Heiss M, et al. Single-nanowire solar cells beyond the ShockleyQueisser limit. Nature Photonics, 2013, 7(4): 306-310.
    [90] Wallentin J, Anttu N, Asoli D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science, 2013, 339(6123): 1057-1060.
    [91] Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. ChemSusChem, 2008, 1: 880.
    [92] Schubert M B, Werner J H. Flexible solar cells for clothing. Materials Today, 2006, 9(6): 42-50.
    [93] Rold n-Carmona C, Malinkiewicz O, Soriano A, et al. Flexible high efficiency perovskite solar cells. Energy and Environmental Science, 2014, 7(3): 994-997.
    [94] Kaltenbrunner M, White M S, Glowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications, 2012, 3(1): 770.
    [95] Oregan B C, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740.
    [96] Chen H, Kuang D, Su C, et al. Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(31): 15475-15489.
    [97] Yamaguchi T, Tobe N, Matsumoto D, et al. Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Solar Energy Materials and Solar Cells, 2010, 94: 812.
    [98] Park J H, Jun Y, Yun H, et al. Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate. Journal of the Electrochemical Society, 2008, 155(7): 145.
    [99] Haque S A, Palomares E, Upadhyaya H M, et al. Flexible dye sensitised nanocrystalline semiconductor solar cells. Chemical Communications, 2003, 24: 3008-3009.
    [100] Chen L C, Ting J, Lee Y, et al. A binder-free process for making all-plastic substrate flexible dye-sensitized solar cells having a gel electrolyte. Journal of Materials Chemistry, 2012, 22(12): 5596-5601.
    [101] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
    [102] Im J, Lee C, Lee J, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088-4093.
    [103] Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganicorganic hybrid perovskite solar cells. Nature Materials, 2014, 13: 115.
    [104] Yang W S, Park B, Jung E H, et al. Iodide management in formamidinium-lead-halidebased perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376-1379.
    [105] Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647.
    [106] Burschka J, Pellet N, Moon S, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316-319.
    [107] Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2014, 8(2): 133-138.
    [108] You J, Hong Z, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8(2): 1674-1680.
    [109] Yang D, Yang R, Ren X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Advanced Materials, 2016, 28(26): 5206-5213.
    [110] Dou B, Miller E M, Christians J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966.
    [111] Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planarheterojunction solar cells on flexible polymer substrates. Nature Communications, 2013, 4(1): 2761.
    [112] Kearns D R, Calvin M. Photovoltaic effect and photoconductivity in laminated organic systems. Journal of Chemical Physics, 1958, 29(4): 950-951.
    [113] Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913-915.
    [114] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258(5087): 1474-1476.
    [115] Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791.
    [116] Sondergaard R R, Hosel M, Angmo D, et al. Roll-to-roll fabrication of polymer solar cells. Materials Today, 2012, 15(1): 36-49.
    [117] Krebs F C, Espinosa N, Hosel M, et al. 25th anniversary article: rise to power-OPV-based solar parks. Advanced Materials, 2014, 26(1): 29-39.
    [118] Po R, Bernardi A, Calabrese A, et al. From lab to fab: how must the polymer solar cell materials design change?—An industrial perspective. Energy and Environmental Science, 2014, 7(3): 925-943.
    [119] Shaheen S E, Brabec C J, Sariciftci N S, et al. 2.5% efficient organic plastic solar cells. Applied Physics Letters, 2001, 78(6): 841-843.
    [120] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864-868.
    [121] Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100. Nature Photonics, 2009, 3(5): 297-302.
    [122] Chen H, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3(11): 649-653.
    [123] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 2012, 6(9): 591-595.
    [124] You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications, 2013, 4: 1446.
    [125] Zhang S, Ye L, Zhao W, et al. Realizing over 10% efficiency in polymer solar cell by device optimization. Science China—Chemistry, 2015, 58: 248.
    [126] Liu Y, Zhao J, Li Z, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5(1): 5293-5293.
    [127] Chen J, Cui C, Li Y, et al. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Advanced Materials, 2015, 27: 1035.
    [128] He Z, Xiao B, Liu F, et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9(3): 174-179.
    [129] Gao F, Inganas O. Charge generation in polymer-fullerene bulk-heterojunction solar cells. Physical Chemistry Chemical Physics, 2014, 16(38): 20291-20304.
    [130] Koster L J, Shaheen S E, Hummelen J C, et al. Pathways to a new efficiency regime for organic solar cells. Advanced Energy Materials, 2012, 2(10): 1246-1253.
    [131] Hou J, Tan Z, Yan Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. Journal of the American Chemical Society, 2006, 128(14): 4911-4916.
    [132] Zhang M, Guo X, Ma W, et al. A polythiophene derivative with superior properties for practical application in polymer solar cells. Advanced Materials, 2014, 26(33): 5880-5885.
    [133] Svensson M, Zhang F, Veenstra S, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials, 2003, 15(12): 988-991.
    [134] Wang E, Wang L, Lan L, et al. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters, 2008, 92(3): 033307.
    [135] Qin R, Li W, Li C, et al. A planar copolymer for high efficiency polymer solar cells. Journal of the American Chemical Society, 2009, 131(41): 14612-14613.
    [136] Lu L, Yu L. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Advanced Materials, 2014, 26(26): 4413-4430.
    [137] Huo L, Zhang S, Guo X, et al. Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angewandte Chemie, 2011, 50(41): 9697-9702.
    [138] Guo X, Zhang M J, Ma W, et al. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells based on PBDTTT-C-T/PC71BM. Advanced Materials, 2014, 26: 4043.
    [139] Wang M, Hu X, Liu P, et al. Donor-acceptor conjugated polymer based on naphtho[1, 2-c:5, 6-c]bis[1, 2, 5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society, 2011, 133(25): 9638-9641.
    [140] Yang T, Wang M, Duan C, et al. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy and Environmental Science, 2012, 5(8): 8208-8214.
    [141] Liao S, Jhuo H, Cheng Y, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Advanced Materials, 2013, 25(34): 4766-4771.
    [142] Nian L, Zhang W, Zhu N, et al. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. Journal of the American Chemical Society, 2015, 137(22): 6995-6998.
    [143] Liao S, Jhuo H, Yeh P, et al. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Scientific Reports, 2015, 4(1): 6813.
    [144] Cui C, Wong W, Li Y, et al. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy and Environmental Science, 2014, 7(7): 2276-2284.
    [145] Zhang M, Gu Y, Guo X, et al. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8. Advanced Materials, 2013, 25(35): 4944-4949.
    [146] Zhang M, Guo X, Zhang S, et al. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Advanced Materials, 2014, 26(7): 1118-1123.
    [147] Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Advanced Materials, 2015, 27(31): 4655-4660.
    [148] Vohra V, Kawashima K, Kakara T, et al. Efficient inverted polymer solar cells employing favourable molecular orientation. Nature Photonics, 2015, 9(6): 403-408.
    [149] Hummelen J C, Knight B, Lepeq F, et al. Preparation and characterization of fulleroid and methanofullerene derivatives. Journal of Organic Chemistry, 1995, 60(3): 532-538.
    [150] Wienk M M, Kroon J, Verhees W, et al. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angewandte Chemie, 2003, 42(29): 3371-3375.
    [151] He Y, Chen H, Hou J, et al. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. Journal of the American Chemical Society, 2010, 132(4): 1377-1382.
    [152] Zhao G, He Y, Li Y, et al. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Advanced Materials, 2010, 22(39): 4355-4358.
    [153] Guo X, Cui C, Zhang M, et al. High efficiency polymer solar cells based on poly (3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5(7): 7943-7949.
    [154] Meng X, Zhang W, Tan Z, et al. Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70] fullerene bisadduct derivative as the acceptor. Advanced Functional Materials, 2012, 22(10): 2187-2193.
    [155] He D, Du X, Xiao Z, et al. Methanofullerenes, C60(CH2)n (n = 1, 2, 3), as building blocks for high-performance acceptors used in organic solar cells. Organic Letters, 2014, 16(2): 612-615.
    [156] Lin Y, Zhan X. Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Materials Horizons, 2014, 1(5): 470-488.
    [157] Lin Y, Cheng P, Li Y, et al. A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18V. Chemical Communications, 2012, 48(39): 4773-4775.
    [158] Lin Y, Li Y, Zhan X, et al. A solution-processable electron acceptor based on dibenzosilole and diketopyrrolopyrrole for organic solar cells. Advanced Energy Materials, 2013, 3(6): 724-728.
    [159] Zhou Y, Ding L, Shi K, et al. A non-fullerene small molecule as efficient electron acceptor in organic bulk heterojunction solar cells. Advanced Materials, 2012, 24(7): 957-961.
    [160] Zhou Y, Dai Y, Zheng Y, et al. Non-fullerene acceptors containing fluoranthene-fused imides for solution-processed inverted organic solar cells. Chemical Communications, 2013, 49(51): 5802-5804.
    [161] Yang Y, Zhang G, Yu C, et al. New conjugated molecular scaffolds based on [2, 2] paracyclophane as electron acceptors for organic photovoltaic cells. Chemical Communications, 2014, 50(69): 9939-9942.
    [162] Zhan X, Tan Z, Domercq B, et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. Journal of the American Chemical Society, 2007, 129(23): 7246-7247.
    [163] Facchetti A. Polymer donor-polymer acceptor (all-polymer) solar cells. Materials Today, 2013, 16(4): 123-132.
    [164] Liu Y, Mu C, Jiang K, et al. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Advanced Materials, 2015, 27(6): 1015-1020.
    [165] Lin Y, Wang J, Zhang Z, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials, 2015, 27(7): 1170-1174.
    [166] Zhong Y, Trinh M T, Chen R, et al. Efficient organic solar cells with helical perylene diimide electron acceptors. Journal of the American Chemical Society, 2014, 136(43): 15215-15221.
    [167] Jiang W, Ye L, Li X, et al. Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50(8): 1024-1026.
    [168] Ye L, Jiang W, Zhao W, et al. Selecting a donor polymer for realizing favorable morphology in efficient non-fullerene acceptor-based solar cells. Small, 2014, 10(22): 4658-4663.
    [169] Lin Y, Zhang Z, Bai H, et al. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8(2): 610-616.
    [170] Zhou E, Cong J, Hashimoto K, et al. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Advanced Materials, 2013, 25(48): 6991-6996.
    [171] Gao L, Zhang Z, Xue L, et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Advanced Materials, 2016, 4: 629.
    [172] Zhang X, Lu Z, Ye L, et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Advanced Materials, 2013, 25(40): 5791-5797.
    [173] Zhang X, Zhan C, Yao J, et al. Non-fullerene organic solar cells with 6.1% efficiency through fine-tuning parameters of the film-forming process. Chemistry of Materials, 2015, 27(1): 166-173.
    [174] Y Lin Y, Wang Y, Wang J, et al. A star-shaped perylene diimide electron acceptor for highperformance organic solar cells. Advanced Materials, 2014, 26(30): 5137-5142.
    [175] Zhang X, Yao J, Zhan C, et al. A selenophenyl bridged perylene diimide dimer as an efficient solution-processable small molecule acceptor. Chemical Communications, 2015, 51(6): 1058-1061.
    [176] Zang Y, Li C, Chueh C, et al. Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Advanced Materials, 2014, 26(32): 5708-5714.
    [177] Zhao J, Li Y, Lin H, et al. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8(2): 520-525.
    [178] Cheng P, Ye L, Zhao X, et al. Binary additives synergistically boost the efficiency of allpolymer solar cells up to 3.45%. Energy and Environmental Science, 2014, 7(4): 1351-1356.
    [179] Zhou Y, Kurosawa T, Ma W, et al. High performance all-polymer solar cell via polymer side-chain engineering. Advanced Materials, 2014, 26(22): 3767-3772.
    [180] Earmme T, Hwang Y, Subramaniyan S, et al. All-polymer bulk heterojuction solar cells with 4.8% efficiency achieved by solution processing from a co-solvent. Advanced Materials, 2014, 26: 6080.
    [181] Yan H, Chen Z, Zheng Y, et al. A high-mobility electron-transporting polymer for printed transistors. Nature, 2009, 457(7230): 679-686.
    [182] Mori D, Benten H, Okada I, et al. Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%. Energy and Environmental Science, 2014, 7: 2939.
    [183] Mu C, Liu P, Ma W, et al. High-efficiency all-polymer solar cells based on a pair of crystalline low-bandgap polymers. Advanced Materials, 2014, 26(42): 7224-7230.
    [184] Kang H, Uddin M A, Lee C, et al. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. Journal of the American Chemical Society, 2015, 137(6): 2359-2365.
    [185] Lee C, Kang H, Lee W, et al. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Advanced Materials, 2015, 27(15): 2466-2471.
    [186] Yip H, Jen A K. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy and Environmental Science, 2012, 5(3): 5994-6011.
    [187] Kim J Y, Kim S H, Lee H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials, 2006, 18(5): 572-576.
    [188] Park M, Li J, Kumar A, et al. Doping of the metal oxide nanostructure and its influence in organic electronics. Advanced Functional Materials, 2009, 19(8): 1241-1246.
    [189] Faber H, Burkhardt M, Jedaa A, et al. Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Advanced Materials, 2009, 21(30): 3099-3104.
    [190] Ha Y E, Jo M Y, Park J, et al. Inverted type polymer solar cells with self-assembled monolayer treated ZnO. Journal of Physical Chemistry C, 2013, 117(6): 2646-2652.
    [191] Ha Y E, Jo M Y, Park J, et al. Effect of self-assembled monolayer treated ZnO as an electron transporting layer on the photovoltaic properties of inverted type polymer solar cells. Synthetic Metals, 2014, 187: 113-117.
    [192] Wang F, Tan Z, Li Y, et al. Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy and Environmental Science, 2015, 8(4): 1059-1091.
    [193] Tan Z, Li S, Wang F, et al. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2015, 4(1): 4691.
    [194] Huang F, Wu H, Wang D, et al. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chemistry of Materials, 2004, 16(4): 708-716.
    [195] Na S, Oh S, Kim S, et al. Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Organic Electronics, 2009, 10(3): 496-500.
    [196] Seo J H, Gutacker A, Sun Y, et al. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. Journal of the American Chemical Society, 2011, 133(22): 8416-8419.
    [197] Liao S, Li Y, Jen T, et al. Multiple functionalities of polyfluorene grafted with metal ionintercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction. Journal of the American Chemical Society, 2012, 134(35): 14271-14274.
    [198] Chen Y, Jiang Z, Gao M, et al. Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer. Applied Physics Letters, 2012, 100(20): 203304.
    [199] Lv M, Li S, Jasieniak J J, et al. A hyperbranched conjugated polymer as the cathode interlayer for high-performance polymer solar cells. Advanced Materials, 2013, 25(47): 6889-6894.
    [200] Zhou Y, Fuenteshernandez C, Shim J W, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336(6079): 327-332.
    [201] O’Malley K, Li C, Yip H, et al. Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60surfactant. Advanced Energy Materials, 2012, 2: 82.
    [202] Li C, Chueh C, Ding F, et al. Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. Advanced Materials, 2013, 25(32): 4425-4430.
    [203] Duan C, Zhong C, Liu C, et al. Highly efficient inverted polymer solar cells based on an alcohol soluble fullerene derivative interfacial modification material. Chemistry of Materials, 2012, 24(9): 1682-1689.
    [204] Duan C, Cai W, Hsu B B, et al. Toward green solvent processable photovoltaic materials for polymer solar cells: the role of highly polar pendant groups in charge carrier transport and photovoltaic behavior. Energy and Environmental Science, 2013, 6(10): 3022-3034.
    [205] Hong D, Lv M, Lei M, et al. N-acyldithieno[3, 2-b: 2', 3'-d]pyrrole-based low-band-gap conjugated polymer solar cells with amine-modified [6, 6]-phenyl-C61-butyric acid ester cathode interlayers. ACS Applied Materials and Interfaces, 2013, 5(21): 10995-11003.
    [206] Li S, Lei M, Lv M, et al. [6, 6]-Phenyl-C61-butyric acid dimethylamino ester as a cathode buffer layer for high-performance polymer solar cells. Advanced Energy Materials, 2013, 3(12): 1569-1574.
    [207] Wei Q, Nishizawa T, Tajima K, et al. Self-organized buffer layers in organic solar cells. Advanced Materials, 2008, 20(11): 2211-2216.
    [208] Tai Q, Li J, Liu Z, et al. Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol. Journal of Materials Chemistry, 2011, 21(19): 6848-6853.
    [209] Jung J W, Jo J W, Jo W H, et al. Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol). Advanced Materials, 2011, 23(15): 1782-1787.
    [210] Page Z A, Liu Y, Duzhko V V, et al. Fulleropyrrolidine interlayers: tailoring electrodes to raise organic solar cell efficiency. Science, 2014, 346(6208): 441-444.
    [211] Smith D D, Cousins P J, Westerberg S, et al. Toward the practical limits of silicon solar cells. IEEE Journal of Photovoltaics, 2014, 4(6): 1465-1469.
    [212] Nakamura J, Asano N, Hieda T, et al. Development of hetero junction back contact Si solar cells. IEEE Journal of Photovoltaics, 2014, 4: 1491-1495.
    [213] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE Journal of Photovoltaics, 2014, 4: 1433-1435.
    [214] 鄧慶維 , 黃永光 , 朱洪亮 . 25% 效率晶體硅基太陽能電池的最新進展 . 激光與光電子學進展 , 2015, 52: 110002.
    [215] 肖旭東 , 楊春雷 . 薄膜太陽能電池 . 北京 : 科學出版社 , 2014.
    暫無
    新書推薦